

Strain Gauge/Bridge/Load Cell/Pressure Transducer to DC Transmitters, Field Rangeable DCM 4059 G

Input: One to Four 350 W Sensors, 0-5 mV to 0-400 mV, 4-10 VDC Excitation Output: 0-1 V to ±10 V or 0-1 mA to 4-20 mA, Isolated

Hot Sw Plua-In Design

Strain Gauge Input Ranges

Minimum: 0 to 5 mV range 0.5 mV/V sensitivity Maximum: 0 to 400 mV range 40 mV/V sensitivity

Millivolt output range is determined by the sensor sensitivity (mV/V) and the excitation voltage: mV/V sensitivity X excitation voltage = total mV range

Input Impedance

200 kΩtypical

Common Mode Rejection 100 dB minimum

Calibration Resistor Options

M01 option: Toggle switch with calibration resistor inside module. Specify resistor value.

M02 option: Toggle switch for external (load cell) calibration resistor.

Excitation Voltage

Maximum output: 10 VDC maximum at 120 mA Drive capability: Up to four 350 Ωbridges at 10 VDC Switch-selectable: 0-10 VDC in 1 V increments Fine adjustment: ±5% via multi-turn potentiometer Stability: ±0.01% per °C

Sense Lead Compensation

Better than ±0.01% per 1 W change in leadwire resistance. 10 W max. for 10 VDC excitation w. 350 W bridge

Zero Offset (Tare)

±100% of span in 15% increments

LoopTracker

Variable brightness LEDs for input/output loop level and status

DC Output Ranges

Voltage: 0-1 VDC to 0-10 VDC Bipolar voltage: ±1 VDC to ±10 VDC

Current: 0-2 mADC to 0-25 mADC 20 V compliance, 1000 W at 20 mΑ

Output Calibration

Non-interactive multi-turn zero and span potentiometers ±15% of span adjustment range typical

Output Ripple and Noise

<10 mVRMs ripple and noise

Output Test

Sets output to test level when pressed Adjustable 0-100% of span Not available with M01 or M02 options

Accuracy

±0.1% of span (includes adjustment resolution and linearity)

Response Time

70 milliseconds typical (14.2 Hz) DF option: 10 millisecond response time typical (100 Hz)

Isolation

2000 VRMS minimum

Full isolation: power to input, power to output, input to output Ambient Temperature Range and Stability

-10°C to +60°C operating ambient

Better than 0.04% of span per °C stability

Housing and Sockets

IP 40, requires installation in panel or enclosure Plugs into DCM 011 or DCM 011 FS socket Socket mounts to 35 mm DIN rail or can be surface mounted Power

Standard: 115 VAC ±10%, 50/60 Hz, 2.5 W max. A230 option: 230 VAC ±10%, 50/60 Hz, 2.5 W max. P option: 85-265 VAC 50/60 Hz, 60-300 VDC, 2.5 W typ. D option: 9-30 VDC, 2.5 W typical

Description

The DCM 4059 G accepts a strain gauge, bridge, load cell, or a summed input from up to four sensors, and provides a proportional, isolated DC voltage or current output. It includes filtering and processing to allow effective use of low-level transducers in the noisy environments found in industrial applications. The full 3-way (input, output, power) isolation makes this module useful for ground loop elimination, common mode signal rejection or noise pickup reduction.

The 120 mA adjustable bridge excitation power supply generates a stable source of excitation voltage to drive from one to four 350 W (or greater) bridge type sensors such as load cells, pressure transducers and strain gauges and amplifies and converts the resulting millivolt signal into the selected output. Sense lead circuitry is included to cancel the effects of leadwire resistance, if required.

Input, output, excitation and zero offset are field configurable, via external rotary and slide switches. Common ranges are on the module label. Offsets up to ±100% of span can be used to cancel sensor offsets or non-zero deadweights (taring). Non-interactive zero and span simplifies calibration.

LoopTracker

DCM exclusive features include two LoopTracker LEDs (green for input, red for output) that vary in intensity with changes in the process input and output signals. These provide a quick visual picture of your process loop at all times and can greatly aid in saving time during initial startup and/or troubleshooting.

Output Test

A DCM exclusive feature includes the test button to provide a fixed output (independent of the input) when held depressed. The output test button greatly aids in saving time during initial startup and/or troubleshooting. The test output level is potentiometer adjustable from 0 to 100% of output span. The output test is not available with the M01 or M02 options. A calibration resistor switch replaces the test button.

Mounting

The DCM 4059 G plugs into an industry standard 11-pin octal socket sold separately. Sockets DCM 011 and finger-safe DCM 011 FS allow either DIN rail or panel mounting.

Model	Input	Output	Power
4059 G	Field configurable. Specify the	Field configurable. Specify follow-	115 VAC
4059 G A230	following if factory is to set	ing if factory is to set switches	230 VAC
4059 G P	Bridge mV/V or mV range	Output range	85-265 VAC or 60-300 VDC
4059 G D	Excitation voltage	Output type (V or mA)	9-30 VDC

Instructions

Precautions

WARNING! All wiring must be performed by a qualified electrician or instrumentation engineer. See diagram for terminal designations and wiring examples. Consult factory for assistance.

WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Excitation Voltage and Range Selection

It is easier to set the switches before installation. Common ranges are listed on the module label.

1. See table below and set Excitation rotary switch C to the desired voltage. The excitation voltage should match the sensor manufacturer's

Excitation	10V	9V	8V	7V	6V	5V	4V	ЗV	2V	1V	٥V
Switch C	Α	9	8	7	6	5	4	3	2	1	0

2. Set Volt/Curr slide switch A to voltage "V" or current "I" depending on output type.

3. From the table above, find the rotary switch combination that match your I/O range and set rotary switches B, D, and E.

Socket and Mounting

The module installation requires a protective panel or enclosure. Use DCM 011 or finger-safe DCM 011 FS socket. The socket clips to a standard 35 mm DIN rail or can be attached to a flat surface using the two mounting holes. Provide air flow around module.

Input Terminals

Refer to diagram and strain gauge manufacturer's data sheet for wiring and color coding. Polarity must be observed when connecting inputs. Connect up to 4 strain gauges or load cells. Sensor shield wire (if equipped) should be grounded at one end only.

Excitation Voltage Connection

Polarity must be observed. Never short the excitation leads together. This will cause internal damage to the module.

Sense Leads

Connect the sense leads as shown. If no sense leads are used, jumper terminals 6 and 7.

Signal Output Terminals

Polarity must be observed when connecting the signal output. Current output provides power to the output loop (sourcing).

Module Power Terminals

The module operating voltage shown on the model/serial number label must match available power. AC power can be connected with either polarity. Polarity MUST be observed for DC powered modules.

Calibration

This procedure and does not account for offset or tare weight calibration. To achieve optimum results, it is recommended that the DCM 4059 G be calibrated using an accurate bridge simulator.

1. Power the module and allow a minimum 20 minute warm up time.

2. Using an accurate voltmeter across terminals 7 and 8, adjust the excitation voltage fine adjust potentiometer to the required voltage.

3. Provide an input to the module equal to zero or the minimum input required for the application.

4. Using an accurate measurement device for the module output, adjust the Zero potentiometer for the exact minimum output desired. The Zero control should only be adjusted when the input signal is at its minimum. This will produce the corresponding minimum output signal.

5. Set the input at maximum, and then adjust the Span potentiometer for the exact maximum output desired. The Span control should only be adjusted when the input signal is at its maximum. This will produce the corresponding maximum output signal.

6. The calibration procedure should be repeated to achieve the desired accuracy over the selected range.

Calibration, Models with Option M01 or M02

The M01 option uses a switch and a calibration resistor inside the DCM module. Ensure that the correct resistance value was specified. The M02 option uses a switch for the transducer's internal calibration resistor. The transducer's calibration resistor wires are connected to terminals 5 and 11 on the DCM 4059 G socket.

The sensor manufacturer should provide the percentage of full-scale transducer output when using the calibration resistor.

1. Power the module and allow a minimum 20 minute warm up time.

2. Using an accurate voltmeter across terminals 7 and 8, adjust the excitation voltage fine adjust potentiometer to the required voltage.

3. Provide an input to the module equal to zero or the minimum input required for the application.

4. Using an accurate measurement device for the module output, adjust the Zero potentiometer for the exact minimum output signal desired. The Zero control should only be adjusted when the input signal is at its minimum. The zero pot may also be adjusted for a zero reading on the output display instrumentation, e.g. control system or process indicator. Adjusting the zero pot this way eliminates calibration errors in the display instrumentation.

5. Set the Test toggle switch to the Test position. The calibration resistor is switched into the circuit to unbalance the bridge.

Adjust the span pot for an 80% FS output or 80% reading on the process indicator, or per the manufacturer's percentage of FS output.
Return the Test switch to the opposite position and readjust the zero pot if necessary. The calibration procedure should be repeated to achieve the desired accuracy over the selected range.

Using Offset Switch D

Offset switch D can be used to cancel or tare non-zero readings by offsetting the low end of the input range. This can be used to compensate for tare weights or scale deadweight to get zero output when a load is on the platform. It can be used to compensate for low-output sensors (e.g., < 1 mV/V) that may have large zero offsets. Switch D can realign the zero control so it has enough range to produce the desired zero output. It can also raise the offset to allow calibration of bi-directional sensors or lower the offset to compensate for elevated input ranges such as 10-20 mV.

1. Switch D does not interact with any other switch and is the only switch needed to correct zero offsets. Its only purpose is to adjust or cancel effects

of the low end of the input range not corresponding nominally to 0 mV. Setting switch D to "0" results in no offset.

To raise the output zero, rotate switch D clockwise from 1 through 7 until the zero potentiometer is within range of your desired output.
To lower the output zero, rotate switch D through ranges 9 through F until the zero potentiometer is within range of your desired output. This range

is often used for elevated input ranges.

Output Test Function

Note that models with the M01 or M02 option do not have a Test function and the Test Cal. potentiometer is non-functional. The output test potentiometer is factory set to provide approximately 50% output. When the test button is depressed it will drive the output with a known good signal that can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the output will return to normal. The Test Cal. potentiometer can be used to set the test output to the desired level. It is adjustable from 0 to 100% of the output span. Press and hold the Test button and adjust the Test Cal. potentiometer for the desired output level.

Operation

Strain gauges and load cells are commonly referred to as bridges due to their four-resistor Wheatstone bridge configuration. These sensors require a precise excitation source to produce an output that is directly proportional to the load, pressure, etc. applied to the sensor. The exact output of the sensor (measured in millivolts) is determined by the sensitivity of the sensor (mV/V) and the excitation voltage applied. For example, a load cell rated for 3 mV/V sensitivity and 10 VDC excitation will produce an output of 0 to 30 mV for load variations from 0 to 100%. 3 mV/V sensitivity X 10 VDC excitation = 30 mV range

The module provides a precise excitation voltage to the sensors and receives the resulting millivolt signal in return. The input signal is filtered and amplified, then offset if required, and passed to the output stage. An isolated DC voltage or current output is generated.

GREEN LoopTracker[®]Input LED – Provides a visual indication that a signal is being sensed by the input circuitry of the module. It also indicates the input signal level by changing in intensity as the process changes from minimum to maximum. If the LED fails to illuminate, or fails to change in intensity as the process changes, this may indicate a problem with module power or signal input wiring.

RED LoopTracker Output LED – Provides a visual indication that the output signal is functioning. It becomes brighter as the input and the corresponding output change from minimum to maximum. For current outputs, the RED LED will only light if the output loop current path is complete. For either current or voltage outputs, failure to illuminate or a failure to change in intensity as the process changes may indicate a problem with the module power or signal output wiring.

	Output	0-1 V	0-2 V	0-4 V	1-5 V	0-5 V	0-8 V	2-10 V	0-10 V	±5 V	±10 V	0-2 mA	2-10 mA	0-10 mA	0-16 mA	4-20 mA	0-20 mA
	Switches	ABDE	ABDE	ABDE	ABDE	ABDE	ABDE	ABDE	ABDE	ABDE	ABDE						
	0-5 mV	V002	V802	V102	V602	V902	V202	V702	V302	V402	V502	1007	1602	1902	I202	I702	I302
	±10 mV	V033	V833	V133	V633	V933	V233	V733	V333	V433	V533	I033	I633	1933	I233	I733	I333
	0-10 mV	V00A	V80A	V10A	V60A	V90A	V20A	V70A	V30A	V40A	V50A	I00A	I60A	190A	I20A	I70A	I30A
	±20 mV	V03B	V83B	V13B	V63B	V93B	V23B	V73B	V33B	V43B	V53B	I03B	I63B	193B	I23B	I73B	I33B
	0-20 mV	V003	V803	V103	V603	V903	V203	V703	V303	V403	V503	1003	1603	1903	I203	I703	I303
	0-25 mV	V006	V806	V106	V606	V906	V206	V706	V306	V406	V506	I006	I606	1906	I206	I706	I306
뤝	0-30 mV	V00E	V80E	V10E	V60E	V90E	V20E	V70E	V30E	V40E	V50E	100E	I60E	190E	I20E	170E	I30E
	0-40 mV	V00B	V80B	V10B	V60B	V90B	V20B	V70B	V30B	V40B	V50B	IOOB	I60B	190B	I20B	I70B	I30B
	0-50 mV	V000	V800	V100	V600	V900	V200	V700	V300	V400	V500	1000	I600	1900	I200	I700	I300
	0-100 mV	V008	V808	V108	V608	V908	V208	V708	V308	V408	V508	I008	I608	1908	I208	I708	I308
	0-200 mV	V001	V801	V101	V601	V901	V201	V701	V301	V401	V501	I001	I601	I901	I201	I701	I301
	0-250 mV	V004	V804	V104	V604	V904	V204	V704	V304	V404	V504	I004	I604	1904	I204	I704	I304
	0-300 mV	V00C	V80C	V10C	V60C	V90C	V20C	V70C	V30C	V40C	V50C	100C	160C	190C	I20C	I70C	I30C
	0-400 mV	V009	V809	V109	V609	V909	V209	V709	V309	V409	V509	1009	1609	1909	I209	I709	I309

Specifications are subject to change without notice. Contact factory for assistance.