

DCD 4059 / 4059D

DIN Mount Amplifier

Input: 100 Ω to 10,000 Ω Bridges, 0.5 mV/V to 40 mV/V, 1-10 VDC Excitation Output: 0-1 V to ±10 V or 0-2 mA to 4-20 mA (Sink or Source)

- Drive up to Four 350 Ω Bridges
- Adjustable Excitation Power Supply
- Sense Lead Compensation
- One Minute Setup for Hundreds of I/O Ranges
- Removable Plugs for Faster Installation
- Non-Interactive Zero and Span
- Full 3-Way Input/Output/Power Isolation
- Input and Output LoopTracker® LEDs
- Adjustable Output Test
- Internal or External Calibration Resistor Options

Applications

- Load Cell Weighing Systems and Scales
- Strain Gauge Pressure Sensors and Transducers
- Tanks, Scales, Extruder Melt Pressure, Crane Loads

Input Range

100 Ω to 10,000 Ω bridges at 10 VDC

Up to four 350 Ω bridges at 10 VDC Minimum: 0 to 5 mV range 0.5 mV/V sensitivity Maximum: 0 to 400 mV range 40 mV/V

sensitivity Millivolt output range is determined by the sensor sensitivity (mV/V) and the excitation voltage: mV/V sensitivity X excitation voltage = total mV range

Input Impedance

200 kΩ typical

Excitation Voltage

Switch Selectable:	0-10 VDC in 1 V increments
Maximum Output:	10 VDC maximum at 120 mA
Drive Capability:	Up to four 350 Ω bridges at 10 VDC
Fine Adjustment:	±5% via multi-turn potentiometer
Stability:	±0.01% per °C

Sense Lead Compensation

Better than $\pm 0.01\%$ per 1 Ω change in leadwire resistance

Maximum leadwire resistance: 10 Ω with 350 Ω at 10 VDC

Zero Offset (Tare)

±100% of span in 15% increments

LoopTracker

Variable brightness LEDs for input/output loop level and status

Output Ranges

Voltage (10 mA max.): 0-1 VDC to 0-10 VDC Bipolar Voltage (±10 mA max.): ±5 VDC or ±10 VDC Current: 0-2 mADC to 0-20 mADC

Output Calibration

Multi-turn zero and span potentiometers ±15% of span adjustment range typical

Output Linearity, Ripple & Noise

Better than $\pm 0.1\%$ of span, <10 mVRMS ripple and noise

Functional Test Button

Sets output to test level when pressed, adjustable 0-100% of span. Not available with M01 or M02 option

Response Time

70 milliseconds typical (14.2 Hz) DF option: 10 millisecond response time typical (100 Hz) Contact factory for custom response times

Common Mode Rejection

100 dB minimum

Isolation

1200 VRMS min. Full isolation: power to input, power to output, input to output

Ambient Temperature Range and Stability

-10°C to +60°C operating ambient Better than ±0.02% of span per °C stability

Power

Standard: 60-265 VAC, 50/60 Hz or 85-300 VDC D option: 9-30 VDC (either polarity) or 10-32 VAC Power: 2 to 5 Watts depending on number of load cells

Dimensions

0.89" W x 4.62" H x 4.81" D 22.5 mm W x 117 mm H x 122 mm D Height includes connectors

Description

The DCD 4059 accepts an input from one to four strain gauges, bridge type sensors, load cells, or pressure transducers. It filters, amplifies, and converts the resulting millivolt signal into the selected DC voltage or current output that is linearly related to the input.

The full 3-way (input, output, power) isolation makes this module useful for ground loop elimination, common mode signal rejection or noise pickup reduction.

The adjustable excitation power supply generates a stable source of voltage to drive from one to four 350 Ω (or greater) devices. Sense lead circuitry is included to cancel the effects of leadwire resistance, if required.

Input, output, excitation and zero offset are field configurable, via external rotary and slide switches. Offsets up to ±100% of span can be used to cancel sensor offsets or non-zero deadweights (taring). Non-interactive zero and span simplifies calibration.

Sink/Source Versatility

For maximum versatility the DCD 4059 milliamp output can be selectively wired for sinking or sourcing. This allows connection to any type of mA input receiving device.

LoopTracker

Exclusive features include two LoopTracker LEDs (green for input, red for output) that vary in intensity with changes in the process input and output signals. These provide a quick visual picture of your process loop at all times and can greatly aid in saving time during initial startup and/or troubleshooting.

Output Test

An exclusive feature includes the test button to provide a fixed output (independent of the input) when held depressed. The test output level is potentiometer adjustable from 0 to 100% of output span.

The output test button greatly aids in saving time during initial startup and/or troubleshooting. Not available with M01 or M02.

How to Order

All models are field rangeable. Please specify:

Model DCD 4059 Order DCD 4059 D for operation on low voltage power Options as required Resistor value if ordering M01 option

I/O can be pre-set to your specifications. Please provide:

Bridge mV/V Excitation voltage Output range

Model	Input	Output	Power
DCD 4059	Field configurable— specify mV/V and	Field configurable—	60-265 VAC or 85-300 VDC
DCD 4059 D	excitation voltage if factory is to set switches	specify range if factory is to set switches	9-30 VDC or 10-32 VAC

Options-add to end of model number

M01 Built-in calibration resistor. Specify resistor value.

M02 Switch for external calibration resistor.

DF 10 millisecond response time, or consult factory

U Conformal coating for moisture resistance

Range Setup and Wiring

Range Selection

It is generally easier to select ranges before installing the module on the DIN rail. The tables below list available settings and ranges. The table on the next page is used for offsets. The module side label lists common ranges. See the model/serial number label if a custom range was specified.

Rotary switches and a slide switches on the side of the module are used to select input and output ranges to match your application.

- Switch A: Excitation voltage
- Switch B: Input range
- Switch C: Input offset (see table on next page)
- Switch D: Output range
- Switch E : Set to "V" for voltage output or
 - Set to "I" for current output

Determine how much output in millivolts the load cell will produce at full load. Multiply the manufacturer's mV/V sensitivity specification by the applied excitation voltage.

For example, a load cell rated for 3 mV/V sensitivity using 10 VDC excitation will produce an output of 0 to 30 mV for load variations from 0 to 100%.

3 mV/V sensitivity X 10 VDC excitation = 30 mV range

Excitation Voltage Setup

Refer to the sensor manufacturer's recommendations to determine what excitation voltage to use.

Set Excitation rotary switch A to desired excitation voltage.

After installation the excitation fine adjust potentiometer may be used to precisely trim this voltage, if desired.

I/O Range Selection B, C, D, E

1. From the table below, find the rotary switch combination that matches your I/O ranges and set rotary switches B, C, and D.

2. Set switch E to "V" for voltage output or "I" for current output.

3. For ranges that fall between the listed ranges use the next highest setting and trim the output signal with the zero and span potentiometers as described in the Calibration section.

Electrical Connections and Installation

WARNING! All wiring must be performed by a qualified electrician or instrumentation engineer. See diagram below for terminal designations and wiring examples. Consult factory for assistance.

Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring. Connect power last.

Check white model/serial number label for module operating voltage to make sure it matches available power.

Module Power Terminals

When using DC power, either polarity is acceptable, but for consistency with similar API products, positive (+) can be wired to terminal 13 and negative (–) can be wired to terminal 16. Connect I/O wiring before power wiring.

Signal Input Terminals

Refer to strain gauge manufacturer's data sheet for wire color coding. Polarity must be observed when connecting inputs.

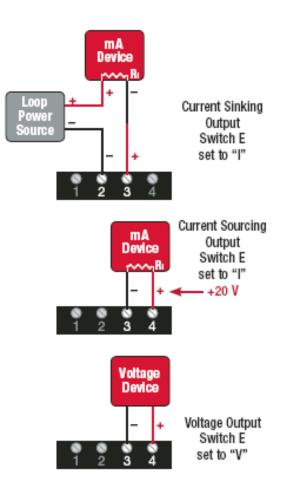
CAUTION: Never short the excitation leads together. This will cause internal damage to the module.

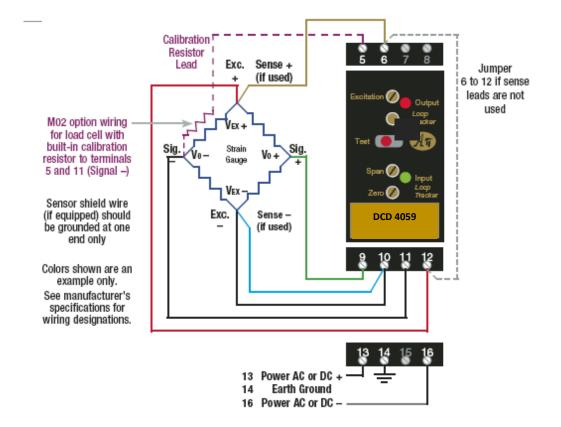
A five- or six-lead bridge has one or two sense leads respectively. Sense leads allow the DCD 4059 to compensate for leadwire resistance effects. Connect the sense leads if used. Polarity must be observed.

If no sense lead is used, jumper sense (+) terminal 6 and excitation (+) 12.

Final trim adjustment should be done after all connections are made.

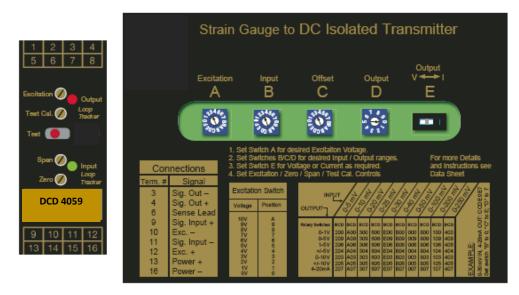
Signal Output Terminals


Polarity must be observed when connecting the signal output. If your device accepts a current input, determine if it provides power to the current loop or if it must be powered by the DCD module. Use a multi-meter to check for voltage at the device's input terminals. Typical voltage may be 9-24 VDC.


4

Excitation	SWITCH A
10 V	A
9 V e	9
8 V	8
7 V	7
6 V	6
5 V	5
4 V	4
3 V	3
2 V	2
1 V	1
0 V	0

- Haller Deally


Type of Device for Output	– Terminal	+ Terminal
Measuring/recording device accepts	2 (-)	3 (+)
a mA (current) input and provides		switch E
power to the current loop.		set to "I"
Measuring/recording device accepts	3 (-)	4 (+20 V)
a mA (current) input and the input is		switch E
unpowered or passive. APD module		set to "I"
provides the loop power.		
Measuring/recording device accepts	3 (-)	4 (+)
a voltage input.		switch E
		set to "V"

Output	0-1 V	0-2 V	0-4 V	1-5 V	0-5 V	0-8 V	2-10 V	0-10 V	±5 V	±10 V	0-2 mA	0-4 mA	0-8 mA	2-10 mA	0-10 mA	0-16 mA	4-20 mA	0-20 mA
Switches Input	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE	BCDE						
0-5 mV	200V	208V	201V	206V	209V	202V	207V	203V	204V	205V	2001	208I	201I	206I	2091	202I	207I	203I
0-10 mV	A00V	A08V	A01V	A06V	A09V	A02V	A07V	A03V	A04V	A05V	A001	A08I	A01I	A06I	A091	A02I	A07I	A03I
0-20 mV	300V	308V	301V	306V	309V	302V	307V	303V	304V	305V	3001	308I	301I	306I	3091	302I	307I	303I
0-25 mV	600V	608V	601V	606V	609V	602V	607V	603V	604V	605V	600I	608I	601I	606I	609I	602I	607I	603I
0-30 mV	E00V	E08V	E01V	E06V	E09V	E02V	E07V	E03V	E04V	E05V	E00I	E08I	E01I	E06I	E091	E02I	E07I	E03I
0-40 mV	B00V	B08V	B01V	B06V	B09V	B02V	B07V	B03V	B04V	B05V	BOOI	B08I	B01I	B06I	B09I	B02I	B07I	BO3I
0-50 mV	000V	008V	001V	006V	009V	002V	007V	003V	004V	005V	000I	008I	001I	006I	0091	002I	007I	0031
0-100 mV	800V	808V	801V	806V	809V	802V	807V	803V	804V	805V	800I	808I	801I	806I	809I	802I	807I	803I
0-120 mV	F00V	F08V	F01V	F06V	F09V	F02V	F07V	F03V	F04V	F05V	F00I	F08I	F01I	F06I	F09I	F02I	F07I	F03I
0-200 mV	100V	108V	101V	106V	109V	102V	107V	103V	104V	105V	1001	108I	101I	106I	1091	102I	107I	103I
0-250 mV	400V	408V	401V	406V	409V	402V	407V	403V	404V	405V	400I	408I	401I	406I	4091	402I	407I	403I
0-300 mV	C00V	C08V	C01V	C06V	C09V	C02V	C07V	CO3V	C04V	C05V	C001	C08I	C01I	C06I	C091	C02I	C07I	C03I
0-400 mV	900V	908V	901V	906V	909V	902V	907V	903V	904V	905V	900I	908I	901I	906I	909I	902I	907I	903I

Calibration, Output Test, Operation

Calibration

The Zero, Span, and Excitation potentiometers are used to calibrate the output. This calibration procedure does not account for offsets or tare weights. If your system has an offset, tare weight or deadweight, refer to the Offset Switch procedure.

To achieve optimum results, the system should be calibrated using an accurate bridge simulator, pressure calibrator, or calibration weights depending on the application.

1. Apply power to the module and allow a minimum 20 minute warm up time.

2. Using an accurate voltmeter across terminals 10 and 12, adjust the excitation voltage potentiometer for the exact voltage desired.

3. Provide an input to the module equal to zero or the minimum input required for the application.

4. Using an accurate measurement device for the module output, adjust the Zero potentiometer for the exact minimum output signal desired. The Zero control should only be adjusted when the input signal is at its minimum.

5. Set the input at maximum, and then adjust the Span pot for the exact maximum output desired. The Span control should only be adjusted when the input signal is at its maximum.

Using Offset Switch C

Offset switch C allows canceling or taring of non-zero deadweights or other sensor offsets such as:

- Compensate for tare weights or scale deadweight to get zero output when a load is on the platform.
- Compensate for low-output sensors (e.g., less than 1 mV/V) that may have large zero offsets. Switch C can realign the zero control so it has enough range to produce the desired zero output.
- Raising the offset to allow calibration of bipolar sensors such as ±10 mV.
- Lowering the offset to compensate for elevated input ranges such as 10-20 mV.

1. Switch C does not interact with any other switch and is the only switch needed to correct zero offsets. Its only purpose is to adjust or cancel effects of the low end of the input range not corresponding nominally to 0 mV. Setting this switch to "0" results in no offset.

2. To RAISE the output zero, rotate switch C from "1" thru "7", until the Zero control can be set for your application.

3. To LOWER the output zero, rotate switch C from "9" thru "F", until the Zero control can be set for your application.

4. After all switches are set, repeat the calibration procedure as described above.

Calibration Resistor Option M01

The M01 option uses a shunt resistor installed internally in the DCD 4059. The

resistance is specified by the transducer manufacturer. Before starting calibration, ensure that the correct resistance value was specified when the DCD 4059 was ordered.

The sensor manufacturer should provide the percentage of fullscale output for the transducer when using the internal resistor for calibration.

1. With the DCD 4059 powered and the transducer at operating temperature, adjust the zero pot located on top of the DCD 4059 for a zero or low-end output (for example, 4 mA for a 4-20 mA output).

2. The zero pot may also be adjusted for a zero reading on the output display instrumentation, e.g. control system or process indicator. Adjusting the zero pot this way eliminates calibration errors in the display instrumentation.

3. Set the DCD 4059 TEST toggle switch to the TEST position. The internal shunt resistor is switched into the circuit to unbalance the bridge.

4. Adjust the span pot to for an 80% FS output or 80% reading on the process indicator.

5. Return the TEST switch to the opposite position and readjust the zero pot if necessary.

Calibration Resistor Option M02

The M02 option is specified when the transducer incorporates an internal calibration resistor. The transducer must be connected per the manufacturer's specifications.

The sensor manufacturer should provide the percentage of fullscale output for the transducer when using the transducer's internal calibration resistor.

The transducer's calibration resistor wires are connected to terminals 5 and 11 (Signal –) if there are two wires or terminal 5 if there is one calibration resistor wire. See wiring diagram on previous page.

1. With the DCD 4059 powered and the transducer at operating temperature, adjust the zero pot located on top of the DCD 4059 for a zero or low-end output, e.g. 4 mA (assuming the selected output is 4-20 mA).

2. The zero pot may also be adjusted for a zero reading on the output display instrumentation, e.g. control system or process indicator. Adjusting the zero pot this way eliminates calibration errors in the display instrumentation.

3. Set the DCD 4059 TEST toggle switch to the TEST position. The transducer's shunt resistor is switched into the circuit to unbalance the bridge.

4. Adjust the span pot for an 80% FS output or 80% reading on the process indicator, or per the manufacturer's percentage of FS output.

5. Return the TEST switch to the opposite position and readjust the zero pot if necessary.

Offset % of Span	Switch C
105%	7
90%	6
75%	5
60%	4
45%	3
30%	2
15%	1
0%	0
-15%	9
-30%	Α
-45%	В
-60%	С
-75%	D
-90%	E
-105%	F

Output Test Function

Note that models with the M01 option or the M02 option do not have a TEST function. When either of these options is specified the Test switch operates the calibration resistor and the Test Cal. potentiometer is non-functional.

The output test potentiometer is factory set to provide approximately 50% output. When the test button is depressed it will drive the output with a known good signal that can be used as a diagnostic aid during initial start-up or troubleshooting. When released, the output will return to normal.

The Test Cal. potentiometer can be used to set the test output to the desired level. It is adjustable from 0 to 100% of the output span. Press and hold the Test button and adjust the Test Cal. Potentiometer for the desired output level.

Operation

Strain gauges and load cells are normally passive devices that are commonly referred to as "bridges" due to their four-resistor Wheatstone bridge configuration. These sensors require a precise excitation source to produce an output that is directly proportional to the load, pressure, etc. that is applied to the sensor.

The exact output of the sensor (measured in millivolts) is determined by the sensitivity of the sensor (mV/V) and the excitation voltage applied.

An additional input, the sense lead, monitors the voltage drop in the sensor leads and automatically compensates the excitation voltage at the module in order to maintain a constant excitation voltage at the sensor.

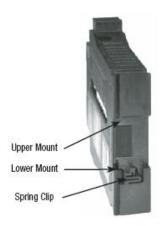
The DCD 4059 provides the excitation voltage to the sensors and receives the resulting millivolt signal in return. This input signal is filtered and amplified, then offset, if required, and passed to the output stage. Depending on the output configuration selected, a DC voltage or current output is generated.

GREEN LoopTracker® Input LED – Provides a visual indication that a signal is being sensed by the input circuitry of the module. It also indicates the input signal level by changing in intensity as the process changes from minimum to maximum. If the LED fails to illuminate, or fails to change in intensity as the process changes, this may indicate a problem with module power or signal input wiring.

RED LoopTracker Output LED – Provides a visual indication that the output signal is functioning. It becomes brighter as the input and the corresponding output change from minimum to maximum. For current outputs, the RED LED will only light if the output loop current path is complete. For either current or voltage outputs, failure to illuminate or a failure to change in intensity as the process changes may indicate a problem with the module power or signal output wiring.

Installation Precautions

WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.


Installation, Diagnostics, Load Cell Information

Installation

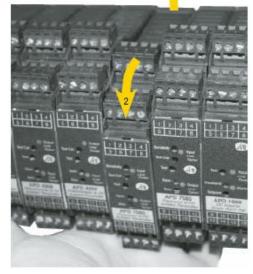
The housing clips to a standard 35 mm DIN rail. The housing is IP40 rated and should be mounted inside a panel or enclosure.

Precautions

WARNING! Avoid shock hazards! Turn signal input, output, and power off before connecting or disconnecting wiring, or removing or installing module.

Installation

1. Tilt front of module downward and position against DIN rail. 2. Clip Lower Mount to bot-



3. Push front of module upward until Upper Mount snaps into place.

Removal

Avoid shock hazards! Turn signal input, output, and power off before removing module.

- 1. Push up on bottom back of module.
- 2. Tilt front of module downward to release Upper Mount from top edge of DIN rail.
- 3. The module can now be removed from the DIN rail.

Diagnostic Voltage Measurements

Using a meter with at least 10 megaohm input impedance, measure the voltage coming from the strain gauge at the locations shown.

Sensitivity is measured in mV/V.

Positive Meter Lead	Negative Meter Lead	Meter Reading No pressure/load	Meter Reading Full pressure/load
+ Exc.	- Exc.	Excitation Voltage	Excitation Voltage
+ Sig.	- Exc.	+ ½ Excitation Voltage	3/2 Excitation Voltage + (1/2 x Excitation Voltage x Sensitivity)
– Sig.	- Exc.	+ 1/2 Excitation Voltage	1/2 Excitation Voltage - (1/2 x Excitation Voltage x Sensitivity)
+ Sig.	– Sig.	Zero Volts	Excitation Voltage x Sensitivity

Typical Wiring Color Codes for Load Cells Always consult manufacturer. Exceptions and/or custom wire colors exist!

Manufacturer	+ Exc.	- Exc.	+ Signal	– Signal	Shield	+ Sense	- Sense	Manufacturer	+ Exc.	- Exc.	+ Signal	– Signal	Shield	+ Sense	- Sense
A & D	Red	Whitte	Green	Blue	Yellow			Nikkei	Red	Black	Green	White	Bare		
Allegany	Green	Black	White	Red	Bare			OmegaDyne	Red, D, F	Blk., C, E	Green A	White B	Bare		
American/Amcell	Green	Black	White	Red	Bare			Pennsylvania	Orange	Blue	Green	White	Bare		
Artech	Red	Black	Green	White	Bare			Philips	Red	Blue	Green	Gray	Bare		
Beowulf	Green	Black	White	Red	Bare			Presage Promotion	Blue	White	Red	Black	Yellow		
BLH	Green	Black	White	Red	Yellow			Revere	Green	Black	White	Red	Orange		
Cardinal	Green	Black	White	Red	Bare			Revere	Red	Black	Green	White	Orange		
Celtron	Red	Black	Green	White	Bare			Rice Lake	Red	Black	Green	White	Bare		
Digi Matex	Red	White	Green	Yellow	Silver			Sensortronic	Red	Black	Green	White	Bare		
Dillon (DQ+)	Green	White	Black	Red	Orange			Sensortronic (col.)	Green	Black	White	Red	Bare		
Electroscale	Red	Black	Green	White	Bare			Sensotec/Honeywell	Red	Black	White	Green	Bare		
Entran	Red	Black	Yel./Grn.	White				Sentran	Red	Black	Green	Witte	Bare		
EverGreen	Green	Black	White	Red	Bare			SMD	Red	Black	White	Green	Bare		
Flintec	Green	Black	White	Red	Yellow			Strainsert	Red	Black	Green	White	Bare		
Force Measurement	Red	Black	Green	White	Bare			Stellar STI	Red	Black	White	Green	Bare		
Futek	Red	Black	Green	White				Stellar STI	Red	Black	Green	White	Bare		
General Sensor	Red	Black	Green	White	Bare			Stellar STI	A	D	В	C	Bare		
GSE	Red	Black	White	Green	Bare			Stellar STI	A, B	C, D	F	E	Bare		
HBM	Green	Black	White	Red	Yellow			T-Hydronics	Red	Black	Green	White	Bare		
HBM (PLC/SBE)	Red	Black	Green	White	Yellow			Tedea Huntleigh	Green	Black	Red	White	Bare	Blue	Brown
Interface	Red	Black	Green	White	Bare			Thames Side	Red	Blue	Green	Yellow	Bare		
Kubota	Red	Witte	Green	Blue	Yellow			Toledo	Green	Black	White	Red	Yellow		
LeBow	Red	Black	Green	White	Bare			Totalcomp	Red	Black	Green	White	Bare		
Mettler Toledo	White	Blue	Green	Black	Orange	Yellow	Red	Transducer Tech.	Red A	Black D	Green C	White B	Bare G		
National Scale	Green	Black	White	Red	Yellow			Transducers Inc.	Red	Black	Green	Witte	Orange		
NCI	Red	Black	White	Green	Bare	Yellow	Blue	Weigh-Tronix	Green	Black	White	Red	Or AV(t).	Yellow	Blue

WARRANTY REPAIR POLICY

Limited Warranty on Products

Any Cooper Instruments product which, under normal operating conditions, proves defective in material or in workmanship within one year of the date of shipment by Cooper will be repaired or replaced free of charge provided that a return material authorization is obtained from Cooper and the defective product is sent, transportation charges prepaid, with notice of the defect, and it is established that the product has been properly installed, maintained, and operated within the limits of rated and normal usage. Replacement or repaired product will be shipped F.O.B. from our plant. The terms of this warranty do not extend to any product or part thereof which, under normal usage, has an inherently shorter useful life than one year. The replacement warranty detailed here is the buyer's exclusive remedy, and will satisfy all obligations of Cooper whether based on contract, negligence, or otherwise. Cooper is not responsible for any incidental or consequential loss or damage which might result from a failure of any and all other warranties, express or implied, including implied warranty of merchantability or fitness for particular purpose. Any unauthorized disassembly or attempt to repair voids this warranty.

Obtaining Service under Warranty

Advance authorization is *required* prior to the return to Cooper Instruments. Before returning the item, contact the Repair Department c/o Cooper Instruments at (540) 349-4746 for a Return Material Authorization number. Shipment to Cooper shall be at buyer's expense and repaired or replacement items will be shipped F.O.B. from our plant in Warrenton, Virginia. Non-verified problems or defects may be subject to a \$150 evaluation charge. Please return the original calibration data with the unit.

Repair Warranty

All repairs of Cooper products are warranted for a period of 90 days from date of shipment. This warranty applies only to those items that were found defective and repaired; it does not apply to products in which no defect was found and returned as is or merely recalibrated. It may be possible for out-of-warranty products to be returned to the exact original specifications or dimensions.

* Technical description of the defect: In order to properly repair a product, it is *absolutely necessary* for Cooper to receive information specifying the reason the product is being returned. Specific test data, written observations on the failure and the specific corrective action you require are needed.