History of Force Measurement in the US – Part 7

Continuing its effort to make relevant knowledge available to the public, the Bureau published a third circular in 1918, Circular 75 “Safety in the household.” So popular and enduring was the first edition, that the Bureau revised the data accordingly and published a second edition in 1932. The focus of “Safety in the household” was to bring awareness to the increasing dangers posed by household use of gas and electricity, newly developed poisons (like cleaning materials), and other safety concerns that came with the boom in invention and availability of an ever-wider range of products to the average consumer.



The combined impact of all three circulars was to leave an impression on the public that the Bureau existed to test household materials and appliances, with the whole scope of the Bureau’s work known only in technical and scientific arenas. In fact, so unaware was the general populace of the Bureau’s full work that Thomas Edison suggested that the government establish a similar entity in 1915 because he didn’t know that it already existed.



Although the Bureau was quick to see the need for its presence in electrical concerns and materials production and standardization, it was somewhat slow to adopt an interest in the field of radioactivity. In 1904, a physics professor came to the Bureau with a book entitled “Radioactivity,” but the Bureau took little interest. Following a second edition of “Radioactivity,” a Nobel Prize to its author Rutherford, and a visit in 1909 to the Bureau by Rutherford himself, the Bureau finally took notice of the future of nuclear physics.


Tangential to radiation, another kind of emanation, radio telegraphy (wireless) was also introduced. The earliest experiments in transmission of sound through radio signals had begun around 1901. Though its existence was known, use of radio was not employed in World War I and it was not really commercially developed until the 1920s. Early work on radio at the Bureau focused on its use in Navy communications as the U.S. Naval Radiotelegraphic Laboratory at the Bureau. Not long after Navy investigations were established, the Army followed suit. For several years, the Bureau housed the investigators from the armed services, before actually beginning work on radio itself in 1911, when a commercial researcher sent in his frequency meter for calibration.



The means for calibrating radio equipment did not exist at the Bureau, so the problem was turned over to their resident wireless expert who soon headed a new section called radio measurements. The first radio-related issue to be tackled in detail was the investigation of ammeters used to measure high frequency current in radio transmitters. This study led to the establishment of heavy-current standards for radio frequencies. For the most part, the army/navy researchers at the Bureau concentrated on low frequency longer transmission signals, the Bureau dedicated the bulk of its early work to high frequency commercial concerns.



In 1912, on the eve of a Wireless Conference in London (to which the Bureau would send a representative), the sinking of the Titanic showed how useful radio could be and how badly trained operators were needed. Four ships were within 60 miles of Titanic when radio operators sent their first distress signals, but inexperienced operators had trouble receiving the messages or were not manning their radios at the time. Only one of the ships responded to Titanic’s signals.



For the most part, the degree to which human error in use of radio had contributed to the loss of life in the Titanic disaster remained unknown, but the Wireless Conference in London did determine that only the 600-meter wavelength would be used for ships at sea and it set other standards in place regarding radio transmission at sea.


Following the Conference, Congress began to create legislation governing the use of radio, including laws over wavelength usage and licensing of radio stations. These concerns fell to the Bureau of Navigation (within the Department of Commerce) which called on the Bureau of Standards to supply Congress with more information including test procedures and standards related to radio use. In order to enforce Congress’s law on interference, the Bureau designed a decremeter to measure wavelength and decrement. His instrument was immediately accepted for use by the Bureau of Navigation as well as the War and Navy Departments. From 1913-1915, the Bureau developed a radio compass system to aid ship navigation (though its implementation was slow due to resistance from the Bureau of Lighthouses and from ship captains). In 1915, Congress appropriated funds to support investigation and standardization within the new radio industry. This was followed by a larger appropriation in 1916 for construction of a radio laboratory.


**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)


As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing


We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall. ​