NEWS CATEGORIES

 

History of Force Measurement in the US – Part 5

Our last look at the history of force measurement in the U.S. left us in 1922 with the establishment of the Bureau’s Corrosion Laboratory, the need for which arose from the problem of stray underground electrical currents corroding infrastructure.  But the corrosion problem was not solely the result of man-made electrical currents. As such, the Bureau, encouraged by gas companies and other utilities, continued to investigate the issue of corrosion due to the soil in which metallic infrastructure was buried, absent of any electrical current.

Another industry that sought the aid of the Bureau was the coal mining industry, which approached the Bureau in 1909 seeking help in establishing standards of electrical practice in mines. One of the first industries to adopt practices utilizing the benefits of electricity, the mining industry quickly found that electrical sparks in the mines could quickly lead to disasters. The mining question led the Bureau to do a more comprehensive assessment of the hazards posed to life and property by electricity used both in industry and in the home and produced both by man or by lightning. The result was the publication of safety rules for the electrical industry in 1914 and the establishment of a nationwide electrical safety code in 1915. Both publications met with widespread resistance causing the Bureau to issue to circular citing numerous examples of electrical accidents from newspapers published in 1913. In time, however, states and municipalities recognized the need for safety practices and adopted the Bureau’s methods.

Dr. Stratton, meanwhile, argued that the investigations into the electrical industry and electrical safety were not enough and called for similar investigations into all utilities including gas, water and telephone, among others. The Secretary of Commerce agreed and in 1914, Congress appropriated funds for the work. Again, the investigation was met with resistance from the utilities and the public, causing circulars to be issued describing the exact nature and goals of the Bureau’s work and how it would benefit society.

During this time, the Bureau’s appropriations for public utility standards were its second-highest, exceeded by appropriations for industrial research. This testing began with structural materials such as clay and iron and ranged all the way to rubber bands and ink. In first testing the properties of the substance in question, the investigation often progressed into issues related to the manufacture and performance of said substance.

For example, the Bureau tested samples of cement purchased for Government construction projects to see if it met Government specifications. It was quickly discovered that the specifications were vague or contradictory and different agencies followed different specifications. As part of their work to develop a clear standard, the Bureau had to develop new and better testing practices and testing equipment. After developing new procedures and instruments, the Bureau found they needed to further investigate the properties of the cement, which eventually led to the development of an entire experimental manufacturing plant so that researchers could study the effects of different manufacturing processes. This method of research was then carried over to the study of other construction materials. At the same time, other Bureau facilities were conducting tension and compression tests on the concrete and still others were studying the effects of external elements, such as seawater, on the concrete. Each new report on the finding seemed to generate requests from manufacturers, engineers or the public to study some new facet of the concrete, which would then require the establishment of procedures and development of equipment to study each new issue. With each new material subjected to Bureau investigation, the process generally began with a meeting at the Bureau of representatives from the manufacturing, construction, and academic communities as well as other concerned parties to discuss the issues and goals of each regarding the investigation.

The Bureau met with its share of fruitless or unsuccessful testing as well. In one instance a researcher set out to develop a way of conducting quality assurance testing on metals based on their magnetic properties. The goal was to identify flawed material without the need for destruction tests, with the goal of applying the new procedure in instances like those of the fissured track rails. Initial results indicated a correlation between the magnetic and mechanical properties of some metals causing much excitement within the Bureau and the concerned industries; however, years of further testing negated these early findings and the Bureau eventually abandoned the project.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing sales@cooperinstruments.com.

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall. ​