History of Force Measurement in the US – Part 3

In 1909, the structural materials laboratories of the Geological Survey were transferred to the Bureau of Standards, which added 53 staff members and four field laboratories, with the Bureau later adding a fifth (as no more space was available in the two buildings originally planned to house the Bureau and its laboratories).  Around this time appropriations were made for new large capacity (up to 2.3 million pounds) testing machines, to be used mainly in testing construction materials, and a new building to house them.


The Bureau was troubled by the difficulty to find and keep staff members. As the Bureau’s prestige grew, its personnel were presented with offers from universities and private laboratories eager to add staff with Bureau training to their ranks. They were willing to pay double or more what Government appropriations allowed for the salaries of Bureau employees, forcing the Bureau to hire recent graduates and relatively inexperienced staff, train them on the job and then promote from within. As a perk of working for the Bureau, a doctoral program was instituted in which employees could attend night classes taught by senior staff or professors visiting from nearby universities and where students could use the work they were doing for the Bureau toward their theses. As an additional lure for students, the Bureau offered testing opportunities and equipment that no other university in the country could. The program was a success offering 72 graduate and undergraduate courses by 1960 with over 1,300 enrollees at that time.


In the 20 years from 1899 to 1919, use of electricity as a power source for American industry had jumped from less than 5% to more than 55%. Dr. Rosa, as head of the Bureau’s electrical research division, once said that the Bureau came into being largely to aid the new electrical industry. He felt that by the Bureau’s involvement, the quality of the products, instruments and machinery produced by this industry was increased and by demanding a higher quality product for the marketplace, the public also benefited from the Bureau’s work. In the Bureau’s earliest days, almost half of the new staff members to the Bureau were dedicated to the electrical research division to work on research in radio, electrolysis, electrochemistry and more. The first order of business was to create/definite/improve standards of electrical measurement, which saw huge progress between 1903-1910. Work conducted at the Bureau in Washington in 1910 yielded the first internationally accepted high-precision standards for electrical units, which would stand for some 37 years.


By 1925, technology and measurement technique had advanced to the point that the standards developed in 1910 were no longer satisfactory. A movement began to establish new standards in terms of absolute measurement – that is, measurement based on the absolute values of the centimeter, gram and second (CGS). The Bureau’s electrical division once again set to work developing standards within this framework.


During this era, public utilities, such as gas and electric companies lacked ethical standards as much as measurement standards. Accusations of fraudulent meters, inferior product and unchecked rates were made against providers of gas, electricity, railways and others. The Bureau, working in conjunction with these companies, found that in some cases, the companies were not entirely at fault, but rather were at the mercy of lacking uniformity in standards and specifications for their product. Beginning with investigations in lamp lighting (from setting standards for incandescent bulbs, to testing the illuminating power of varying kerosene samples), the Bureau was instrumental in revising the public utility system. The Bureau’s work on gas for illumination led to work on standards for gas used for heating purposes as well. By recommending that gas be sold by its heating value (Btu), instead of the volume sold, the Bureau in effect forced the gas companies to sell a better product, free from impurities like nitrogen that did not contribute to the heating value. Gas companies argued that use of the heating value was not applicable to efficacy of gas used for lighting purposes, but Bureau research directly showed that heating value was an accurate measure of usefulness to the consumer, even if the consumer’s use was lighting rather than heat.


Later investigations into other gas-powered appliances lead to improvements in efficiency, safety and sales. Gas continued to be sold by the cubic foot, however, due to the fact that there was no good Btu meter available to the utility companies. Monitoring of gas quality was taken on by state-run laboratories that were equipped with better chemical and caloric test equipment, so gas companies were held accountable by that means.



**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)


As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing


We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall. ​