History of Force Measurement in the US – Part 19

Finally, in 1935, the Bureau could document an increase in requests from industry for data. This coincided with increased building at the state and federal levels which brought an increase in government requests for tests and calibrations (as well as a modest increase in funding, sufficient to rehire former staffers). In 1938, Congress approved construction of a new electrical testing laboratory to replace the obsolete one built 25 years earlier when voltage ranges were much lower than those being produced in the late ‘30s, further evidencing the improving economy. Thanks in large part to new dam-building projects across the country, the opening of new branch laboratories also increased during the late ‘30s.


Efforts to stimulate the economy through low-cost housing also led to Bureau funding for research into structural and fire-resistant properties of construction materials to be used for housing. This program and its funding were cut from New Deal sponsorship as WWII approached, but the work continuing at the urging of the building industry. After a hiatus during the war, building technology became its own division within the Bureau in 1950.


Also during the 1930s, the Bureau completed research relating to the preservation of paper records. The work, funded by the Carnegie Foundation, tested the effects of such forces as light, heat and humidity on storage of paper and books. Sulphur dioxide was determined to be the greatest enemy of paper storage. The work led, in turn, to studies on the preservation of all types of media and to the Bureau’s involvement in the preservation of the Declaration of Independence and the Constitution at the National Archives.


Another interesting line of study at the time related to X-ray dosages and ultraviolet radiation. Although both technologies were becoming quite widely used by medical professionals, they did not really understand the thresholds of safe and unsafe exposure, particularly to the equipment operators as opposed to the patients. At the urging of the president of the Radiological Society of North America, Congress provided funding at the Bureau began to research the issue. Physicist Lauriston Taylor, who had been working on X-rays and electronics at Cornell was brought on to Bureau staff to lead the work.


Taylor’s first order of business was to construct new equipment for the testing, which he did from parts of other equipment on hand at the Bureau. In 1928, he attended the Second International Congress of Radiology and became the first Chairman of the National Committee on Radiation Protection and Measurements. Taylor published research in 1929 showing that X-ray dosages could be quantitatively measured and in 1931 he published guides for safety shielding of operating rooms, patients and operators. Similar publications for radium, at the hand of Dr. Leon Custiss, followed in 1934.


Paints, made from compounds including radium, were developed to have luminous properties for applications on instrument panels for the military during WWI and also on watch faces. Little was known about the effects of the radium paint at the time. It was later determined that the amount used for a watch face was fine, but the problem was the factory application of the paint to the watch during production. Being wartime, mostly girls worked in the factories and the put their paint brush tips in their mouths to draw them to a point, thereby ingesting the paint. Hundreds of these girls died of what was later diagnosed as radium poisoning. In 1932, the American Medical Association discontinued all internal administration of radium as a remedy. The Bureau’s research on the topic was found in the 1932 handbook on radium protection and in 1941 it had a handbook of its own.


Also during the 1930s, work advanced in spectroanalysis with new and accurate measurements of the atomic emission spectra of chemical elements, rare gases, and rare metals. An index was published by the American Society for Testing Materials that listed almost 1,000 papers on the subject written during the preceding two decades. Dr. Briggs also proposed that the Bureau sponsor a central agency for computing fundamental tables for applied mathematics. With basically no equipment provided, the project began in New York City with hundreds of workers doing calculations by hand. The first order of business? To prepare the 16-place values of natural logarithms, the 15-place values of probability functions, and the 10-place values of Bessel functions of complex arguments. Within a decade, equipment existed to compute in minutes what 400 individuals with pencils did in months, but the Mathematical Tables Project was widely and gratefully recognized at the time.


**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)


As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing


We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.