Email UsPhone Toll Free: 1-800-344-3921

News

After the war was over, the Bureau realized that despite all of the testing it undertook for various Government departments, no real demand for standardization of products existed for the Government as a whole. For example, the Army and Navy would ask for the same item but with very different specifications. These specifications were developed independently by the requesting department with no regard as to the practicality or feasibility of production. Although in many cases, the standardization requested by departments was impractical or impossible, the nation’s readiness to accept standards and standardized products primed it for the age of mass production.

 

Prior to the war, there was little interest in this country in the manufacture of quality optical glass. Glass used in scientific instruments, like telescopes or microscopes, was imported, mostly from Germany. Research premises and tools were ordered in 1914 to determine a production process for American-made optical glass. Progress was slow owing to a lack of precision glass grinders, but the need was great as the war required troops to have binoculars, periscopes and gun sights. With optical glass, as with many wartime projects, the experiments were hastily prepared and most of the developments came too late for practical application before the war was over. 

 

Developments also continued in radio, with the war showing Americans that Europe had far more advanced radio technology. Visiting scientists from France left the Bureau with various radio instruments they used in 1917. The most important technology to be found in these instruments was the electron tube, also called the vacuum tube amplifier, which had been invented in America but not put into practical use due to issues regarding patent law. The French, meanwhile, were using it in all of their radios, wire telephony and radio telephones. When the legal issues were finally resolved in 1917, work began immediately to resolve this country’s radio problems, including training technicians, establishing a transatlantic radio system, development of radios for use on the battlefield, equipment to communicate with submerged submarines and more.

 

Research began in earnest to explore the possible uses of the electron tube, resulting in reliable long-distance wire telephony and speech communication between ground stations and airplanes. The vacuum tube could be used to locate transmitting stations, which was useful for identifying enemy positions during the war and for locating stations in violation of transmitting laws. It was also used to guide planes and ships through fog. Furthermore, as an amplifier, it allowed for smaller antennas and extended radio range.

 

Following a conference of university representatives at the end of 1917 regarding radio communications, the Bureau issued Circular 74, “Radio instruments and measurements” which was issued to radio instructors in the armed forces and universities as a reference book. For more than 20 years, it was the authoritative text for radio engineers. Following the publication of Circular 74, the Signal Corps requested a beginner’s textbook on radio for enlisted men. “The Principles Underlying Radio Communication” appeared 3 months later and was the result of collaboration between the Bureau and 6 college faculty members and came to be widely used as a standard textbook by both the military and the academic world.

 

The war also introduced the country to the concept of interchangeable parts manufactured by different companies in different parts of the country. Largely a result of the production of weaponry and ammunition, the production of interchangeable parts required a phenomenal degree of precision in measurements and manufacturing which was achieved by the use of an unprecedented number of gages. The Bureau saw unprecedented demand for gage production, development and calibration. The domestic production of precision gage blocks (only available by import from Sweden prior to 1918) was essential to the manufacture of interchangeable parts. With funding from the Ordnance Department, the Bureau produced 50 sets of 81 blocks ranging from 0.05 inch to 4 inches. Also of utmost importance was the work of the National Screw Thread Commission, which sought to standardize, and thus render interchangeable, all machine-made threaded products.

 

The Bureau was introduced to countless inventions during the course of the war, including the rocket. Rocket technology was nothing new, but incorporation of new technologies made the rocket promising as a weapon. The Bureau developed test rockets with ranges 7 miles and 120 miles. Various other weapons were developed around rocket technology, but the wartime shortage of research scientists meant that none of these ideas were realized during World War I. The Bureau was also introduced to the automatic rifle, another invention that wouldn’t find its footing until World War II.

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)

   

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it. .

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Tuesday, 25 March 2014 00:00

What Is an LVDT Displacement Transducer?

A linear variable differential transformer, or LVDT, is a type of transducer used for measuring linear displacement. Known as one of the most robust, reliable sensors available on the market, LVDTs from Cooper Instrument & Systems are long-term solutions with a virtually infinite lifespan.

 

How Do They Work?

 

An LVDT displacement transducer is made up of one primary and two secondary coils. A magnetic core (armature) controls the transfer of current between the primary coil and the secondary coils. The two secondary coils are connected in opposition and, because they are equal, read zero on the sensor output. As the armature moves away from center, one of the position sensors increases and the other decreases. The result is an output from the measurement sensor. 

 

What Are LVDTs Used for?

 

Because of their durability and accuracy, LVDTs are used for a variety of applications. There is a long list of common uses, but some of the most popular include testing soil strength, controlling pill production, inspecting assembly lines, and monitoring fluid levels.

 

Why Choose LVDTs?

 

The biggest strength of the LVDT sensor is its ability to function with no electrical interaction across the transducer position sensing element. The result is clean data and infinite resolution. Other benefits include an unlimited mechanical life, single-axis sensitivity, environmentally-strong construction, and fast response times. All of these features combine to make an LVDT sensor a sound investment for the future.

 

At Cooper Instruments & Systems, we offer two types of LVDTs. Both the AC/AC and DC/DC versions can be purchased with captive, unguided, or spring return armatures. Click here to view LVDTs in our catalog.

  

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it. .

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Thursday, 13 March 2014 00:00

Test Stands: A Stand for Every Situation

 

At Cooper Instruments & Systems, we are focused on providing quality solutions for all your needs. That’s why we carry a number of different test stands for our customers. No matter the application or capacity needed, we are here to provide you with the custom test stands necessary to get the job done right.

 

T-Rex Test Stand

 

The T-Rex Test Stand is known to work well under pressure. Just as the name suggests, this stand has been designed to work with a variety of materials, components, and tests. Its new and improved heavy-duty design includes a counterbalanced bolster, improved geometric accuracy, moveable cylinder position, an anti-cylinder rotation device, modular electronics packaging, and aluminum extruded components. T-Rex test stands are often used for materials like concrete, metals, plastics, paper, wood, and more. Furthermore, Cooper Instruments & Systems can work with you to develop a custom design perfect for your situation.

 

Custom Test Stands

 

In addition to the T-Rex Test Stand, we offer a number of other custom stands. We understand that no two jobs are the same, and we are happy to work with you to design a stand that meets your specific needs. Here is a look at two samples we have designed:

 

Force Calibration Machine (FCM)

 

The FCM is a preferred instrument because of its low cost and large range of force. This test stand serves as an in-house quick check system that allows customers to quickly verify the accuracy of their compression force measuring device without slowing down the process.

 

Cooper Tensile Tester (CTT)

 

Designed for clients working in a manufacturing environment, the CTT can be used for high load applications up to 20K+. This instrument is durable and accurate making it a worry free solution for customers who need a precise instrument in a busy setting.

  

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it. .

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

By the time the United States entered the war and realized how many troops and how much equipment would be needed, there was no time for intensive long-term experimentation, so Allied research was adapted to American production methods. Scientists in this country were consumed in the search for new materials, especially new metals for heavy weapons and armor, and replacements for materials made scarce by war use. Chemists were also engaged in production of agents of chemical warfare. Most of these concerns remained outside the scope of the Bureau (with a few exceptions) until 1917 when over $2 million was allotted to the Bureau from the National Security and Defense Fund to be used to constructing and equipping “war-emergency” laboratories. Work in these new labs included metallurgical research, gage work and military equipment research and development. The funds were used to construct additional facilities for the ever-expanding Bureau and also to hire world-class scientists whose salaries would have been unaffordable otherwise.

 

With the demand for troops, the Bureau also hired almost 100 women to fill the clerical and assistant positions vacated by the military drafts, though they continued to be excluded from the higher-level positions. One of the women hired at that time, Johanna Busse, would later rise to be chief of the thermometry section for 20 years. “The first woman with a doctoral degree in physics to work at the Bureau arrived in 1918, to assist in the preparation of a radio handbook for the Signal Corps. A second joined the colorimetry section a year later.”

 

Aside from the staffing issues, the Bureau adapted well to military research. Whereas before the war, much of the Bureau’s work was geared toward industry, it was relatively easy to transition to wartime research by viewing the military as simply another type of industry. Dr. Stratton, before Congress, could justify how most of the research the Bureau was already engaged in could be used in military applications and was thus able to secure continuing appropriations as well as funds for new projects. Each division of the Bureau was able to take on military research functions within their specialty with ease. As one report indicated, food and medicine were the only two facets of the war effort in which the Bureau was not involved.

 

The study of metals and their properties was the Bureau’s biggest project of the wartime effort as need arose for weaponry, tools, airplanes, etc. Whether for ease of production, scarcity of materials, or improved properties (such as lighter weight or thin construction), many new steel alloys were used during wartime and they were sent by their manufacturers to the Bureau for testing of their exact composition and qualities. In the process, the Bureau developed standard tests for these metals. They were also involved in the search for substitutes for metals that had become scarce as a result of the war, like platinum.

 

Aside from metals, a number of other materials were also in short supply at the time. The Bureau assisted in identifying acceptable or unacceptable substitutes for leather (primarily in shoes), and paper. Bureau research also supported the substitution of a cotton fabric for linen that was used to cover airplane wings, as linen was also scarce. Wool was also mostly imported at the time, so research was conducted to find substitutes for military uniforms and blankets.

 

One result of the scarcities and substitutions of materials was that industries were forced to standardize their products to a degree that had not been seen before. The government instituted the Conservation Division to oversee the efficiency of production of various items with the result that variety was reduced and standardization increased. For example, it was during this time that standard clothing sizes came to the fore. In the name of conserving fabric, men’s coats were shortened and outside pockets eliminated. With the scarcity of silk and wool, women’s fashion changed dramatically as well. “Newsprint for papers and magazines was cut as much as 20 percent. Colors of typewriter ribbons shrank from 150 to 5 and were sold in heavy paper instead of tinfoil and tin boxes. Buggy wheels were reduced from 232 sizes and varieties to 4, plows from 326 to 76 sizes and styles, and automobile tires from 287 types to 9.”

 

The Bureau was also highly involved in the development of aircraft for the war, including parts, metals for construction, instrumentation to be used in flight, fuels and lubricants. The Bureau also development a wind tunnel to further exploration into the physics of aviation.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)
 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it. .

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

We left off with the Bureau’s early introduction into radio research, but research into radioactivity also started around the same time. Initial research on radioactivity, which began years later in the laboratories of the United States than in Europe, was conducted under the Bureau’s electrical division. A Congress had been held in Brussels regarding radiology and an international standard had been accepted for radium, before the first sampling (20.28 milligrams) of radium arrived at the Bureau.

 

 

A researcher named Dorsey, who had come to the Bureau from Johns Hopkins, had followed the international research on radiation prior to the Bureau’s own research and was particularly interested in its possible medical application. Dorsey became the Bureau’s radiation specialist, but because the effects of handling the radioactive materials he worked with were not yet understood, Dorsey suffered permanent damage to his hands and left the Bureau in 1920. He published a book on radioactivity for use by medical professionals before returning to the Bureau in 1928 to continue his research in physics and act as a consultant to the radium and X-ray section of the optics division.

 

At this point in the Bureau’s development, after a little more than a decade, the Bureau had grown from 13 employees to 280 working on over 200 projects for the government, public utilities and private industry, while appropriations had grown from $32,000 to some $500,000 annually and new physical locations and new divisions (engineering research, metallurgy, etc.) had been added. In fact, the Bureau’s scope of work was at that point far broader than imagined at the time of its creation, prompting questions from other Government research agencies as to whether the Bureau was still operating within the bounds of its original act. Congress, however, continued to approve of the Bureau’s work and continued to make special appropriations for research into specific projects.

 

In response to the criticism from other agencies, Dr. Stratton expressed a wish to revise the wording of the Bureau’s organic act to avoid misinterpretation as to the scope of the Bureau’s domain, but recognized that doing so would cost the Bureau some flexibility. His solution was to create additional seats on the Visiting Committee to the Bureau so that technological and industrial interests would be represented in addition to the scientific representation that already existed. The actual result was an amendment in 1913 to the act that designated the Bureau to test industrial and commercial materials for the government of the District of Columbia.

 

Also in 1913, William Redfield was appointed Secretary of Commerce and was to become a strong supporter of the Bureau. Redfield visited the Bureau weekly for insight into work that would concern his department. He also made recommendations for consolidating research departments of other agencies into the Bureau when he saw that it would increase efficiency.

 

 

It was also under his direction that the format of the Bureau’s annual report changed to include a list of current needs and that far more copies of the report were distributed. A revision was also made to the published scope of the Bureau as found in the report so that it read that the Bureau was responsible for standards of measurement, standard values of constants, standards of quality, standards of mechanical performance and standards of practice. Recognizing that these functions pertained largely to the Government, it was also understood that the needs of the Government and the general public were quite similar. That is to say that if testing were performed and a standard set to determine the best quality product for Government purchase, the same standard would also apply to private purchase of the same item.

 

At this point, the attentions of the Government and the country turned toward World War I then raging in Europe. The first official wartime research performed by the Bureau related to aeronautic design, and was requested by the National Advisory Committee for Aeronautics. Following this initial endeavor, other requests were made by the War and Navy Departments to conduct research that they were unequipped to perform themselves. Even so, it was a largely unrecognized fact that this war would be one of technology, material and production and that science and technology would play a critical role.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)
 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it. .

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Wednesday, 22 January 2014 19:00

History of Force Measurement in the US - Part 7

Continuing its effort to make relevant knowledge available to the public, the Bureau published a third circular in 1918, Circular 75 “Safety in the household.” So popular and enduring was the first edition, that the Bureau revised the data accordingly and published a second edition in 1932. The focus of “Safety in the household” was to bring awareness to the increasing dangers posed by household use of gas and electricity, newly developed poisons (like cleaning materials), and other safety concerns that came with the boom in invention and availability of an ever-wider range of products to the average consumer.

 

 

The combined impact of all three circulars was to leave an impression on the public that the Bureau existed to test household materials and appliances, with the whole scope of the Bureau’s work known only in technical and scientific arenas. In fact, so unaware was the general populace of the Bureau’s full work that Thomas Edison suggested that the government establish a similar entity in 1915 because he didn’t know that it already existed.

 

 

Although the Bureau was quick to see the need for its presence in electrical concerns and materials production and standardization, it was somewhat slow to adopt an interest in the field of radioactivity. In 1904, a physics professor came to the Bureau with a book entitled “Radioactivity,” but the Bureau took little interest. Following a second edition of “Radioactivity,” a Nobel Prize to its author Rutherford, and a visit in 1909 to the Bureau by Rutherford himself, the Bureau finally took notice of the future of nuclear physics.

 

Tangential to radiation, another kind of emanation, radio telegraphy (wireless) was also introduced. The earliest experiments in transmission of sound through radio signals had begun around 1901. Though its existence was known, use of radio was not employed in World War I and it was not really commercially developed until the 1920s. Early work on radio at the Bureau focused on its use in Navy communications as the U.S. Naval Radiotelegraphic Laboratory at the Bureau. Not long after Navy investigations were established, the Army followed suit. For several years, the Bureau housed the investigators from the armed services, before actually beginning work on radio itself in 1911, when a commercial researcher sent in his frequency meter for calibration.

 

 

The means for calibrating radio equipment did not exist at the Bureau, so the problem was turned over to their resident wireless expert who soon headed a new section called radio measurements. The first radio-related issue to be tackled in detail was the investigation of ammeters used to measure high frequency current in radio transmitters. This study led to the establishment of heavy-current standards for radio frequencies. For the most part, the army/navy researchers at the Bureau concentrated on low frequency longer transmission signals, the Bureau dedicated the bulk of its early work to high frequency commercial concerns.

 

 

In 1912, on the eve of a Wireless Conference in London (to which the Bureau would send a representative), the sinking of the Titanic showed how useful radio could be and how badly trained operators were needed. Four ships were within 60 miles of Titanic when radio operators sent their first distress signals, but inexperienced operators had trouble receiving the messages or were not manning their radios at the time. Only one of the ships responded to Titanic’s signals.

 

 

For the most part, the degree to which human error in use of radio had contributed to the loss of life in the Titanic disaster remained unknown, but the Wireless Conference in London did determine that only the 600-meter wavelength would be used for ships at sea and it set other standards in place regarding radio transmission at sea.

 

Following the Conference, Congress began to create legislation governing the use of radio, including laws over wavelength usage and licensing of radio stations. These concerns fell to the Bureau of Navigation (within the Department of Commerce) which called on the Bureau of Standards to supply Congress with more information including test procedures and standards related to radio use. In order to enforce Congress’s law on interference, the Bureau designed a decremeter to measure wavelength and decrement. His instrument was immediately accepted for use by the Bureau of Navigation as well as the War and Navy Departments. From 1913-1915, the Bureau developed a radio compass system to aid ship navigation (though its implementation was slow due to resistance from the Bureau of Lighthouses and from ship captains). In 1915, Congress appropriated funds to support investigation and standardization within the new radio industry. This was followed by a larger appropriation in 1916 for construction of a radio laboratory.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)
 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it. .

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Page 1 of 8
Join Us on Facebook Join Us on LinkedIn Follow Us on Twitter

©2014, Cooper Instruments & Systems • P.O. Box 3048, Warrenton, VA 20188 USA
Phone: 540-349-4746 • Fax: 540-347-4755 • Toll Free: 1-800-344-3921