News

Tuesday, 04 November 2014 00:00

Pressure Transducers and Traffic Lights

A Look at the Use of Pressure Transducers with Traffic Lights

 

If the term pressure transducer seems foreign, you’ll be quite surprised to learn you probably interact with them on a daily basis. Pressure transducers play a major role in the functioning of many different technologies, including traffic lights.

 

How Traffic Lights Function

 

Contrary to popular belief, most traffic lights do not work on a simple timer. Most use in-roadway sensors or pressure transducers to calculate how many vehicles are at a particular intersection. This is how it works: Looped wires are placed beneath the pavement of an intersection, and when a car passes over it (or rests on it) it disrupts the magnetic field. The disruption is sent to a control box where a computer analyzes the signal. When the pressure transducer signals that there are multiple vehicles at an intersection, the computer chooses to change the light. There are dozens of other factors that affect the equation, but this is a simplified version for understanding how pressure transducers work with traffic lights.

 

Pressure Transducers

 

At Cooper Instruments & Systems, we sell a number of different pressure transducers which can convert a liquid or gas media into an electrical signal. We offer a number of different styles, including the PSG 110, PTG 230, and PTG 400.

  • PSG 110. This pressure transducer is designed to measure pressure ranges from 15 psi to 20,000 psi. It is preferred for its high frequency, flush diaphragm, and small size.
  • PTG 230. This general purpose transducer ranges from 0.5 to 60,000 PSIG. It has a number of different uses and features optional amplified output.
  • PTG-400. Made out of high quality stainless steel, this sensor is intended for measuring gases and liquids. Its high-strength construction allows it to work under difficult circumstances.

Be sure to check out all of our pressure transducers in our catalog.

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it..

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

In addition to the other industries exploding at the time, radio saw huge development in the 1920s. With the end of the patent wars between major manufacturers, radio broadcasting began. Reaching an estimated 7,000 privately owned radio sets in 1921, radio grew during the decade to reach 10 million commercially-produced and privately-owned sets by 1928. The Bureau, for its part, produced circulars instructing consumers on how to build their own radios with different instructions depending on the desired range of reception. The rapid growth of the industry soon had the Bureau calling for standardization of equipment and service.

 

With new radio stations popping up across the country, the government eventually found it necessary to regulate the airwaves. Technical advisors from the Bureau were present at all early radio conferences with Bureau researchers Dr. J. Howard Dellinger and Dr. Charles B. Jolliffe eventually becoming the first and second chief engineers of the Federal Radio Commission.

 

Of the early obstacles to commercial radio, the Bureau was most concerned with improving reception for the listener by devising ways in which the stations could use more precise waves to reduce interference from irregular wave widths. The Bureau developed a variety of new instruments and tools (wavemeters, wavemeter scales, etc.) to aid stations and government regulators in making sure stations stayed on their assigned frequency. Also among Bureau responsibilities was the testing of the frequency standards for broadcasting stations adopted by the FRC in 1927. Later investigations by the Bureau, in cooperation with the radio industry and academia identified that fading could be attributed to irregular absorption of radio waves in the ionosphere. Weather was found not to be a factor, but day and night produced consistent variations in reception. This finding lead to research into shortwave transmission, which was less susceptible to interference.

 

Amidst all the work on commercial radio, radio compasses were also improved for the Navy and other ships. High frequency radiotelephones became the preferred navigational tool for the Coast Guard and the Bureau of Navigation. Useful as the radio compass was, it was deemed inadequate for passenger flights, leading to the development in 1929 of the first visual-type radiobeacon system, which allowed the pilot to know his aircraft’s approximate location at all times. The following year, a system was developed to allow for blind flying and blind landing where the pilot’s only frame of reference for his position came from indicators on his instrument panel showing his position as determined by signals from directional beacons. Then, in 1933, a system was developed to allow nongovernment craft lacking the equipment to use the beacon system to navigate based on the radio waves of broadcasting stations.

 

With industrial growth and standardization efforts in the 1920s, the Bureau became much more visible to the American public, with one result being that the Bureau was flooded with mail and requests ranging from the legitimate to the insane (such as a request for a pamphlet on what the average American should be or for a standard for what well-dressed person should wear and even advice on protection against radioactive dictagraphs that controlled people hypnotically). One of the most numerous requests was for the invention of a device to locate buried treasure. The Bureau created a form letter advising people to just dig by way of response to those requests.

 

The Bureau’s increased visibility also brought increased criticism. Opponents to the standardization crusade questioned what, if any, was the benefit to the general homeowner. The cost savings to industry were clear, but at the level of the individual consumer, such savings were not apparent. Part of the disconnect was that the Bureau did not explicitly distinguish between the “organized consumer” like the government or trade associations and the individual consumer, despite its genuine concern for the individual consumer and insistence that all of its research benefited the consumer by improving the quality of products offered to him.

 

So, while industry resent the government’s oversight into their products and practices by means of the Bureau and while consumers cried for still more oversight, the Great Depression hit, reducing Bureau resources that left both sides feeling even more discontent.

 

Among those to voice concerns about where the Bureau’s authority began or ended was the AESC (American Engineering Standards Committee) which had been created under the eye of the Bureau to deal specifically with industry standardization. When the Bureau then established a “trade standards division” in 1927 to unify the efforts of the Bureau and the AESC, the AESC bristled. Under the direction of a former Bureau member, the AESC became the American Standards Association (ASA) and formally requested that the Bureau cease commercial standardization activities. A rift between the two organizations ensued.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it..

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

While our last installment left off with the human eye, in terms of color perception, this one begins with teeth, as it relates to the Bureau’s investigation of dental amalgams. In 1917, the Surgeon General of the Army approach the Bureau with this problem because of the widespread issue he faced of dealing with dental issues. Insiders from the dental industry worked with the Bureau, which eventually concluded that half or more of dental materials were unsatisfactory. Although dentists, manufacturers or dental materials and dental testing labs cooperated with the Bureau, the government, in the form of the Commerce Department, suppressed the unsatisfactory findings for fear of creating a loss of public confidence. The Bureau helped identify the best adhesives, filling materials and more for use in the dental industry and within about 10 years, unacceptable materials had dropped from 50% to 10%.

 

Bureau efforts during the 1920s continued to span a variety of industries but the construction industry was probably the source of the most investigations. From elevator safety to fire resistance, almost 100 projects relating to construction were taking place in all divisions at the

Bureau – electrical, heat, chemistry, metallurgy and more.

 

In an earlier installment, we showed how the Bureau became involved in the manufacture of optical glass for binoculars, scientific instrumentation and the like. Private industry showed little interest in taking over this manufacturing process, so the Bureau continued its manufacture of glass, mostly for the military. In 1924, the Bureau attempted to cast a 69.5 inch disk for a telescope. At the time, only the country only had two other large glass plants, both with equipment from Europe, whose technology was a trade secret. The Bureau had to draw on their knowledge and experiment. The first four attempts all cracked during cooling, but the fifth attempt, poured in 1927. After some seven months of controlled cooling, the disk, which weighed 3,800 pounds, was declared to be a success.

 

In addition to the large disk, the optical glass section’s other great triumph was the creation of the Bureau’s first standard of planeness created in 1926. It was used as a standard of straightness and planeness whose accuracy measured to five-millionths of an inch. It was also used to produce standard angles and to calibrate instruments for measuring curvature. The glass industry of the time also saw major development through the manufactures of automobile windshields and windows.

 

The automobile industry continued to expand by leaps and bounds, despite warnings about the scarcity of petroleum resources, which were estimated to be exhausted in 10 years. The need thus arose to ensure the quality of gasoline on the market, which, through practices meant to conserve it, would often lead to a substandard product for the consumer. The Bureau recognized that quality gasoline would make a car’s engine perform more efficiently, thus reducing consumption.

 

A whole new area of investigation was born at the Bureau, which published papers on efficiency characteristics of different fuels and oils for use in cars. The Bureau tested various types of antifreeze, but didn’t endorse any as none worked better than alcohol and water. Studies were also conducted on fuel-air rations and engine temperatures, among other things. An investigation concerning brakes for the Army Motor Transportation Corp eventually lead to research on stopping distances and reaction times of drivers. This data collected by the Bureau was used in driver manuals for years after. Some other Bureau studies that grew out of the auto industry were investigations regarding rubber (for tires) and storage batteries used in electric vehicles.

 

While the auto industry eventually assumed responsibility for much of its own research and development, the aviation industry was slower to become self-sufficient. Several government committees and departments were involved in regulation of the aviation industry, and all used the Bureau to conduct research on areas like engines, fuel economy, ignition, instrumentation and aerodynamics. The industry, or at least the military, was not ready in the 1920s, however, to take a chance on new technologies explored by the Bureau including helicopters and jet propulsion. The military push at the time was for “lighter-than-air” craft such as dirigibles. The Bureau supported the military by providing instrumentation for these craft, like navigation equipment, and conducting durability tests on the construction materials used. When dirigibles proved not to be a viable option for safe air travel, the focus did switch to planes, and with the promise of civilian commercial flight, the Bureau increased work on the radios necessary for ground-to-air communication and the beacons that would guide planes in flight.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it..

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Tips for Finding a Torque Gauge

Torque gauges are an important tool for measuring torque in many automotive environments, but some people are not aware of what to look for when they’re in the market for this instrument. Luckily, Cooper Instruments & Systems is here to help guide you through this process.

 

Torque essentially measures the turning force on an object, e.g. how much turning power a car has. For instance, with a foot long wrench applying 500 pounds of pressure in a perpendicular fashion, this would be 500 pounds of torque. In a car, this is what causes acceleration. The higher the torque, the better the car can accelerate. (Torque is different from horsepower, which calculates the power needed to move a certain amount of weight during a certain period of time.)

 

Torque is far easier to measure than horsepower. Horsepower is measured using dynamometers, but dynamometers get the horsepower calculation from measuring torque. Both torque and horsepower combine to give an idea of the overall power of the car. More torque and horsepower generally mean a better performing engine.

 

To measure torque appropriately, it’s vital to have the right tools. Advice on finding a torque gauge depends largely on a person’s level of experience in the automotive industry. An old hand could easily go it alone and get a decent torque gauge on the internet, where torque gauges can be found for a good price. Someone new to the process will definitely want the help of professionals.

 

At Cooper Instruments & Systems, we provide the assistance necessary to get a torque gauge that fits your needs and budget. There are different kinds of gauges, some of which may work better with different makes of cars and different vehicles, and we can help in selecting the right one. Click to view our selection of torque load cells or torque gauges. In addition to torque gauges, we also can assist with pressure gauges, calibration of systems, and more.

 

 

For more information about Cooper Instruments & Systems, please contact Rex Cooper at (800) 344-3921 or email This email address is being protected from spambots. You need JavaScript enabled to view it..

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it..

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Picking up the thread of reducing waste and wasteful practice in industry, the Bureau in the 1920s tackled issues of efficiency in a range of products and industries, particularly the growing auto industry, with studies on auto engines, tires and oils, and public utilities with studies on improving gas appliances and minimizing dielectric loss. Testing on construction materials, crucial to Hoover’s home building initiative, concluded that often more of a building material was used than was structurally necessary, when less material would produce a structurally sound building. Other projects of the time included everything from sound-proofing techniques to fire-proofing to recovery of waste sugar.

 

Bureau investigations during the 1920’s on gas and gas appliances proved to have a significant impact on public health and safety. On its own initiative and using funds granted by Congress in 1915 for investigation of public utility standards, the Bureau began a new investigation of the gas industry prompted by rising gas prices and a belief that that the natural gas feeding half of the cities and towns in the country was in short supply. The Bureau’s aim at the outset of the investigation was to promote conservation of this supposedly dwindling resource.

 

Testing concluded that the greatest source of natural gas waste was domestic appliances, prompting the Bureau’s publication "How to get better service with less natural gas in domestic gas appliances." In the course of the overall gas project, the Bureau also tested a number of “gas-saving” devices that promised to lower consumers’ gas bills when used in conjunction with their gas appliances. These products actually did no such thing and in many cases their use created additional safety dangers. The true culprits were the poor design and faulty installation of appliances, though Bureau recommendations for design changes to stoves, water heaters and room heaters were met with backlash from the industry or were simply rejected.

 

The winter of 1922-1923 saw an increase across the country in deaths from gas poisoning. The Bureau worked together with municipal health departments to compile data on fatalities attributed to carbon monoxide, which, in turn, shed light on the gas industry’s dubious practice of attributing all gas-related fatalities to suicide by carbon monoxide poisoning (even in cities supplied by natural gas which did not contain carbon monoxide). A subsequent investigation by the Bureau in conjunction with Baltimore’s Consolidated Gas & Electric Co. and public health officials reaffirmed gas appliances to be the primary source. Upon publication of the findings, the president of the American Gas Association, enraged, “demanded that further publication be withheld.” The data, however, was undeniable and the Association ended up installing a research associate group at the Bureau. They later hired a Bureau gas engineer and set up their own laboratories and quickly revamped the industry. Within a couple of years, gas poisoning deaths in Baltimore had all but been eliminated. So this shows but one example of how the Bureau’s work could literally be a matter of life or death for the public.

 

By the mid-1920s the Bureau was reporting that domestic production of scientific and industrial instrumentation had increased to 80% as opposed to 15% before the war. They also reported much greater cooperation from industry, especially large corporations, than they had received at the Bureau’s inception. A widespread concern of the time affecting many different industries and interests was the standardization of color.

 

The colorimetry section was formally established within the optics division of the Bureau in 1915, but Bureau interest in the topic went back to 1912 when they were called on to aid oil, butter and margarine makers with color grading their products. When the section was established, they had requests regarding color issues as they related to glass, headlights, paper, sugar and many others. At the time, two color scales were in use, but both had limited application. The unique problem with measuring color is that it is, to a degree, subjective. That is, color is in the eye of the beholder. Recognizing this psychological element to the way humans perceive color, the Bureau studied 150 subjects to establish a data curve. This curve was accepted as the standard by the International Commission for Illumination in 1924. Further years of work eventually resulted in the Bureau’s dictionary of colors and color names.

 

**The information presented here is drawn from “Measures For Progress: A History of The National Bureau of Standards” (Rexmond C. Cochrane)

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it..

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

The Technology Behind Truck Weigh Stations

 

Truck weigh stations are obviously used to weigh trucks – hence the name – but most people don’t know why trucks need to be weighed. And even fewer know how weigh stations operate. Here is a brief look at three different truck weigh station systems and why they are necessary.

 

What are Weigh Stations For?

Weigh stations are primarily used by the United States to collect taxes on transported goods. The amount of taxes owed is determined by the weight. The stations are also used to determine whether trucks are within a particular road system’s safety guidelines. Most private vehicles are exempt from weigh stations, while commercial vehicles weighing more than 26,000 pounds, or having three or more axles, are required to pay fuel taxes.

 

Load Cell Systems

The most popular weigh station system is the load cell system. It is comprised of steel or concrete, and has multiple strain gauges embedded within. These gauges transmit electric currents to a junction box, which measures the variance in the current and calculates the weight on the scale.

 

Bending Plate Systems

The bending plate system uses metal plates with attached strain gauges. When weight is applied to the scale, the strain gauges measure the amount of stress on the plates and calculate the amount of weight the scale is supporting.

 

Piezoelectric Systems

These systems use a number of piezoelectric sensors embedded in conducting material. Weight is applied to the scale and the pressure changes the amount of electrical charge in the conductors. Sensors then measure the change in voltage and calculate the weight of the load.

 

As always, if you have any questions related to this material, our support staff at Cooper Instruments is available to help. Contact them by calling (800) 344-3921 or emailing This email address is being protected from spambots. You need JavaScript enabled to view it..

 

We’d love to hear your feedback regarding this or any other article we’ve posted. To leave feedback, ‘Like’ us on Facebook and then post your feedback on our wall.

Page 1 of 11
Join Us on Facebook Join Us on LinkedIn Follow Us on Twitter

©2014, Cooper Instruments & Systems • P.O. Box 3048, Warrenton, VA 20188 USA
Phone: 540-349-4746 • Fax: 540-347-4755 • Toll Free: 1-800-344-3921